The Dynamics of Trauma

Jamie Syrett, MD
Director of Prehospital Care
Rochester General Health System

Me

- Boarded EM physician
- Fellowship trained in EMS
- Volunteer
- EMT-B,D,P,L5.....etc etc etc
- Today Commitment

Me

- "Funny Doctor"
- Lacrosse Player
- First 10 minute penalty

Feedback

• Please fill it out......l do read it!

My Gift

- UGA
- WAGA
- Mass applause

THIS FILM IS NOT YET -

RATED

"Trauma"

- n. pl. trau mas or trau ma ta
- A serious injury or shock to the body, as from violence or an accident.
- An emotional wound or shock that creates substantial, lasting damage to the psychological development of a person, often leading to neurosis.
- An event or situation that causes great distress and disruption.

Kinematics

- kin e mat ics noun (plural) / kin e matiks/
- The branch of mechanics concerned with the motion of objects without reference to the forces that cause the motion.
- Incomplete Mass and Force are important

Mechanics

- me chan ics noun (plural) /mə'kaniks/
- The branch of applied mathematics dealing with motion and forces producing motion

Mechanism of trauma - Incomplete

- dy nam ics noun (plural) /dī'namiks/ dynamics, plural
- The branch of mechanics concerned with the motion of bodies under the action of force
- The branch of any science in which forces or changes are considered

 Concerned with the effect of forces on the motion of a body or system of bodies, especially when the forces do not originate in the system itself......

 Attention to the dynamics can describe and predict the effects of a trauma

- Considers forces on a <u>system of bodies</u> (vehicle, sidewalk, tree, animal etc).
- By understanding the <u>Dynamics of Trauma</u>
 we can more accurately assess patients.

Dynamics of Trauma

EMS providers are the key (and only)
 people equipped to and in the situation to
 analyze these dynamics.

Lost in Translation

- Case in Rochester
- Transition of care from BLS-FR to ALS ambulance arrived - ALS providers never saw the scene
- Med Phone Alert "27 year old cyclist struck by a vehicle, immobilized prior to our arrival, possible LOC, HR - 140......

The Trauma Scene

- The Trauma Scene is an interaction of
 - Different objects
 - Different speeds
 - Different directions
 - Different masses

- Understanding the dynamics = predict injury
-so lets go back to class

Newtons 1st Law

- An object at rest will remain at rest unless it is acted on by an external and unbalanced force.
- An object in motion will remain in motion unless it is acted on by an external and unbalanced force.
- Known as the law of inertia.

Newton's 2nd Law

- Force = Mass x Acceleration
- Force = Mass x Change in Velocity
- Deceleration is a form of acceleration and is more pertinent to trauma

Newton's 3rd Law

- For every action there is an equal and opposite reaction
- Known as the law of force pairs

Conservation of Energy

 Energy is not created or destroyed, it only changes from form to form

Conservation of Energy

- Kinetic energy changes to
 - Heat
 - Sound
 - Vehicle Deformity
 - Patient Injury

F = ma

- Vehicle I ton (909kg)
- 60 mph to 0 mph over 7 secs = 3.82m/s²
- Gravity = 9.8m/s²
- 60 mph to 0 mph over $0.5 \text{ secs} = 53 \text{m/s}^2$

F = ma

- F if braking = 3472 N
- F is crashing = 48177 N
- 13 times the force!
- The force is the energy dissipated to the vehicle and the passengers during the crash

Kinetic Energy

$$KE = \frac{1}{2} * m * v^2$$

- m=mass, v=velocity
- 150lb at 30mph = 67,500
- 180lb at 30mph = 81,000
- 150lb at 40mph = 120,000

Inertia and Blunt Trauma

- Car strikes pole
- Driver continues to move forward
- Body strikes steering wheel
- Posterior body keeps moving forward
- Organs compressed

Vehicular Trauma

- There are 3 impacts
 - Vehicle with environment
 - Body with cabin
 - Organs with body structure

Falls

- 2 impacts
 - Body with ground
 - Organs with body

Pre-Impact Variables

- Mass (of the vehicle and the patient)
- Velocity
- Age
- Drugs/Alcohol
- Pre-morbid conditions

Impact Variables

- Acceleration
- Direction of Impact (impact variables)
 - 2 vehicles head on at 30mph = 60mph
 - Lateral impact (t-bone)
 - Tangential
 - Roll-over (multiple directions)

T-bone

T-Bone

Traumatic Aortic Shear Injury

EMJ May 2010

Risk factors for LIBTAR (<40mph) were age >60 (p<0.0001), lateral impact direction (OR 2.041, RR 1.99, p=0.003), and struck side seat position (OR 1.934, RR 1.885 p=0.101). Low-impact crash scenarios were found to represent more than 95% of UK road traffic accidents.

Impact Variables

- Affect Injury
 - Protective Gear
 - Seatbelt, airbags, child seats
 - Ejection from Vehicle
 - Additional Impacts between environment and patient will occur

What could be injured?

Seatbelt (even proper use!)

Seatbelt Injuries

- Increasingly seeing
 - Sternal fractures (associated spinal and rib trauma)
 - Intestinal injury

Seatbelt Sign

	No Seatbelt	Seatbelt	Seatbelt Sign
Any Abdo Trauma	10%	15%	64%
Small Bowel Injury	2%	6%	21%

Post Impact Variables

- Permits prediction of region of injury
 - Spider windshield
 - Broken Steering Column
 - Dashboard damage

Post Impact Variables

- Predicts force of injury
 - Intrusion
 - Need for extrication
 - Roll over
 - Height of fall

Chest vs Steering Column

Knee vs Dash

Knee vs Dash

Acetabular Fracture

Pedestrian Struck

- Adult
 - Initial impact to hips/lower extremity
 - Secondary Impact head/torso
 - Onto vehicle then hit the ground

Pedestrian Struck

- Pediatric
 - Initial impact to torso
 - Secondary impact to head
 - Then under vehicle run over or dragged

Other Considerations

- Falls
 - Increased height = increased velocity = increased force of injury
 - 3x patient height = significant increase in severity of injury
 - Landing mechanism hints at injury

Other Considerations

- Blast injury
 - Combine blunt and penetrating components
 - Pressure wave (6800 mph). Shrapnel injury. Blunt Injury.

Penetrating Trauma

- Still a transfer of energy between the patient's body and the object causing the injury
- F=ma, m is small. So damage is highly dependent on velocity and where the impact is (stab = low velocity)

Cone of Injury

Cone of Injury

Cone of Injury

Cavitation

Cavitation Injury

Blast Injury

Blast Injury

- Primary Pressure Wave (6800mph)
- Secondary Shrapnel (High velocity)
- Tertiary Blunt Trauma

Trauma Criteria

- Ejection from moving vehicle
- Death in same passenger compartment
- Prolonged extrication
- Falls > 20 ft
- Rollover
- Pedestrian Struck

- Motorcycle crash
- Electrocution
- Hanging
- Large animal falls
- Blast injury
- GSW

Trauma Criteria

- Each trauma suggests a dynamic mechanism of injury with a significant force involved
- Occult injuries are highly likely despite benign appearance of patient

Mechanism in C Spine

- Mechanism is one of the most important predictors of injury in c-spine injury
- You already have the knowledge base to determine the injury pattern

C-Spine Mechanisms

- 4 main mechanisms
 - Axial load
 - Flexion
 - Extension
 - Complex movement

Forced Extension

HOSTED AT NOTHINGTOXIC.COM

- Historically from Hangings
- Extreme Hyperextension
- Head On Collision and Sudden Deceleration
- Unstable Fracture through Pedicle of C2: minimal cord injury

Axial Load

Jefferson

- Most commonly seen in diving into shallow water
- Not normally associated with neurological deficet although spinal cord injury may occur if there is a retropulsed fragment.
- 50% are associated with other C-spine injuries, 33% are associated with a C2 fracture, 25-50% of young children have concurrent head injury

Jefferson

Forced Flexion

Complex Movement

- type I : fracture upper part of the odontoid peg rare and potentially unstable
- type II: fracture at the base of the odontoid; unstable, and has a high risk of non-union
- type III: through the odontoid and into the lateral masses of C2; best prognosis for healing because of the larger surface area of the fracture

 A fracture caused by 'sudden forward and backward movement of the head with respect to the trunk', with a shearing of the dens from the body of C2, with forward movement by the transverse ligament, with backward movement by the anterior arch of CI; flexion is the most common mechanism of injury; extension injuries result in posterior displacement of the dens.

- EMTs must be experts at reading the scene and seeing the mechanism
- Velocity is the most important factor in any calculation of the forces involved
- Mechanism predicts injury

jsyrett@rochester.rr.com