Richard Beebe MS RN NRP CIC/RF

A Little Oxygen Never Hurt Anyone – Or Did It?

Shortness of Breath?

Problem of Oxygenation or Ventilation?

Oxygenation Ventilation

Goal Directed

Preventable Death!

Hypoxia?

Oxygen Saturation and Pulse Ox Lag

Hypoxia versus Hypoxemia Classifications PaO₂ (rule of thumb)

Normal

Mild hypoxemia

Moderate hypoxemia

Severe hypoxemia

80-100 mm Hg

60-80 mm Hg

40-60 mm Hg

<40 mm Hg

Oxygen

- Oxygen therapy has always been a major component emergency care
- Health care providers believe oxygen alleviates breathlessness

Oxygen

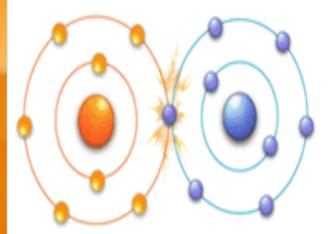
We began giving oxygen because it seemed like the right thing to do...

Documented benefits:
✓ Hypoxia
✓ Nausea/vomiting
✓ Motion sickness

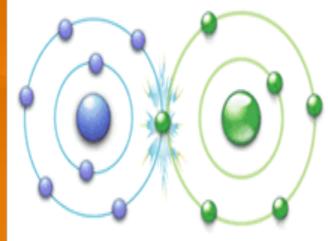
Effects of sudden hypoxia

(Removal of oxygen mask at altitude or in a pressure chamber)

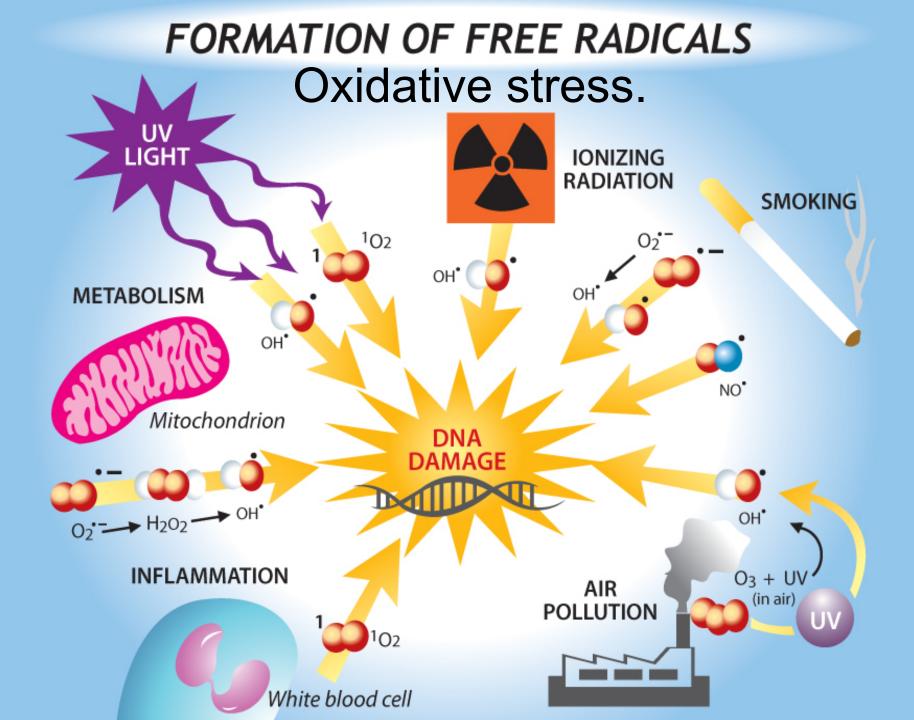
- Impaired mental function; onset at mean SaO2 64%
- No evidence of impairment above 84%
- Loss of consciousness at mean saturation of 56%
 - absence of breathlessness when healthy resting subjects are exposed to sudden severe hypoxia
 - mean SpO2 of airline passengers in a pressurised cabin falls from 97% to 93% (average nadir 88.6%) with no symptoms and no apparent ill effects


Akero A et al Eur Respir J. 2005;25:725-30 Cottrell JJ et al Aviat Space Environ Med. 1995;66:126-30 Hoffman C, et al. Am J Physiol 1946;145:685-692

"Normal" nocturnal SpO₂


- Healthy subjects in all age groups routinely desaturate to an average nadir of 90.4% during the night (SD 3.1%)* (Gries RE et al. Chest 1996; 110: 1489-92)
- *Therefore, be cautious in interpreting a single oximetry measurement from a sleeping patient. Watch the oximeter for a few minutes if in any doubt (and the patient is otherwise stable) as normal overnight dips are of short duration.

The Chemistry of Oxygen


- Oxygen is highly reactive; it has 2 unpaired electrons
- Molecules/atoms with unpaired electrons are extremely unstable and highly-reactive
- Referred to as "free radicals"

Free radical steals an electron from another molecule.

Antioxidant stabilizes the molecule by giving an electron.

Oxygen Free Radicals

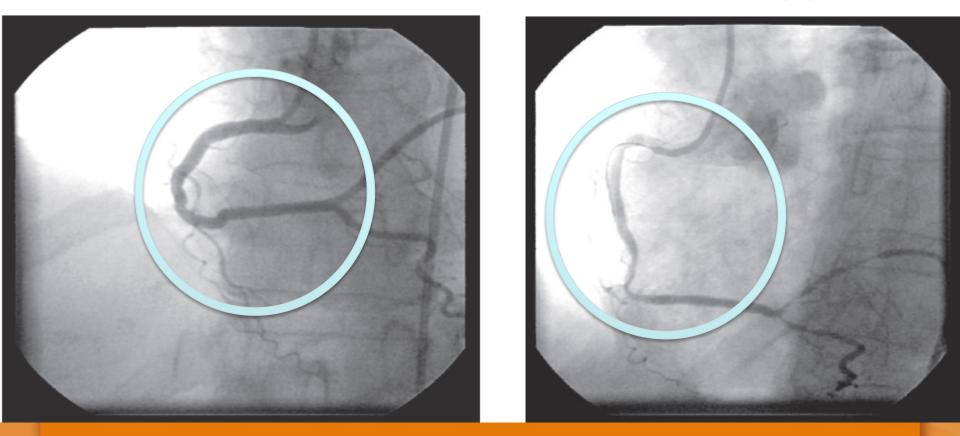
 Develop during reperfusion—not during hypoxia (when O₂ enters damaged area) Flooding ischemic cells with oxygen worsens oxidative stress (proportionate)

Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization

Patrick H. McNulty,¹ Nicholas King,¹ Sofia Scott,¹ Gretchen Hartman,¹ Jennifer McCann,¹ Mark Kozak,¹ Charles E. Chambers,¹ Laurence M. Demers,² and Lawrence I. Sinoway¹ Departments of ¹Medicine and ²Pathology, Pennsylvania State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania

Submitted 23 June 2004; accepted in final form 5 October 2004

Within 5 minutes of 100% O_2 (vs. RA):


- coronary resistance ~ 40%
- Blunted Coronary Blood Flow response to Ach
- Marked ↓ NO

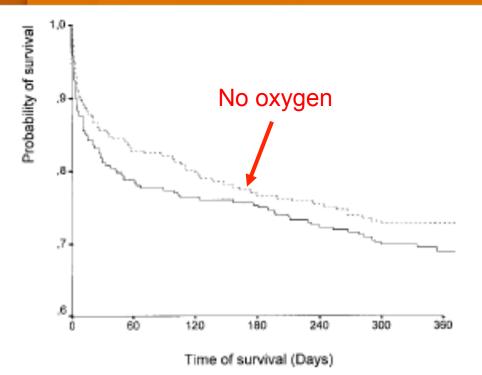
McNulty PH, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Am J Physiol Heart Circ Physiol. 2005; 288: H1057-H1062.

Right Coronary Catheterization

Room air

100% oxygen

McNulty PH, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Am J Physiol Heart Circ Physiol. 2005; 288: H1057-H1062.


Cardiac Arrest Survival Vanderbuilt Univ – TH post ROSC

- 170 patients highest PaO₂ during 24° TH (32-34°C):
 - Survivors had significantly lower PaO₂
 (198) vs non-survivors (254)
 - -Higher PaO₂ \uparrow risk death (OR 1.439)
 - Favorable neuro outcomes (CPC 1-2) also linked to lower PaO₂
 - −Higher PaO₂ ↓ neuro outcomes (OR 1.485)

Janz et al. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Crit Care Med 2012; 40(12): 3135-3139.

Stroke

	Minor or Moderate Strokes		Severe Strokes	
Variable	Oxygen	Control	Oxygen	Control
Survival	81.8%	90.7%	53.4%	47.7%
SSS Score	54 (54-58)	57 (52-58)	47 (28-54)	47 (40-52)
Barthel Index	100 (95-100)	100 (95-100)	70 (32-90)	80 (47-95)

Ronning OM, Guldvog B. Should Stroke Victims Routinely Receive Supplemental Oxygen? A Quasi-Randomized Controlled Trial. *Stroke*. 1999;30:2033-2037.

Stroke

 "Supplemental oxygen should not routinely be given to non-hypoxic stroke victims with minor to moderate strokes." <u>- AHA 1994</u>

 "Further evidence is needed to give conclusive advice concerning oxygen supplementation for patients with severe strokes."

Ronning OM, Guldvog B. Should Stroke Victims Routinely Receive Supplemental Oxygen? A Quasi-Randomized Controlled Trial. *Stroke*. 1999;30:2033-2037.

RESEARCH

BMJ

Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial

Michael A Austin, honorary associate,¹ emergency medicine registrar,² wilderness helicopter, intensive care paramedic,³ Karen E Wills, biostatistician,¹ Leigh Blizzard, senior biostatistician,¹ Eugene H Walters, professorial fellow,¹ Richard Wood-Baker, honorary fellow,¹ director²

¹Menzies Research Institute, University of Tasmania, Hobart, Tasmania, 7001 Australia ²Department of Respiratory

Medicine, Royal Hobart Hospital, Hobart, Tasmania

³Tasmanian Ambulance Service, Hobart, Tasmania

Correspondence to: M A Austin maaustin@utas.edu.au

ABSTRACT

Objectives To compare standard high flow oxygen treatment with titrated oxygen treatment for patients with an acute exacerbation of chronic obstructive pulmonary disease in the prehospital setting.

Design Cluster randomised controlled parallel group trial. Setting Ambulance service in Hobart, Tasmania, Australia.

pressure –33.6 (16.3) mm Hg; P=0.02; n=29) than were patients who received high flow oxygen.

Conclusions Titrated oxygen treatment significantly reduced mortality, hypercapnia, and respiratory acidosis compared with high flow oxygen in acute exacerbations of chronic obstructive pulmonary disease. These results provide strong evidence to recommend the routine use of titrated oxygen treatment in patients with breathlessness

RESEARCH

*i*e

care

ere

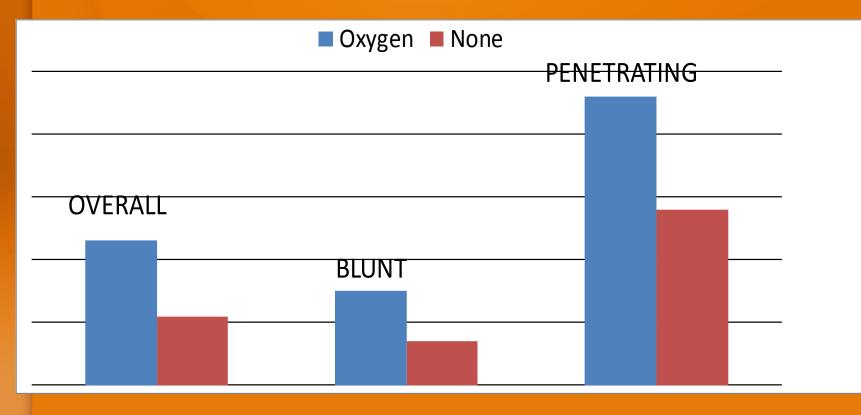
sis

405 diff breathers randomized: **NRBM** (n=226) NC to SpO₂ 88-92% (n=179) Titrated O₂ reduced mortality: all patients 58% ¹Menzie Universi **COPD** patients 78% Tasmani ²Depart Medicir

Hobart, Tasmania

³Tasmanian Ambulance Service, Hobart, Tasmania

RM


Correspondence to: M A Austin maaustin@utas.edu.au disease in the prehospital setting.

Design Cluster randomised controlled parallel group trial. Setting Ambulance service in Hobart, Tasmania, Australia.

compared with high flow oxygen in acute exacerbations of chronic obstructive pulmonary disease. These results provide strong evidence to recommend the routine use of titrated oxygen treatment in patients with breathlessness

Trauma Mortality Charity Hospital (1/1→9/30/2002):

5,549 trauma patients by EMS

Stockinger ZT, McSwain NE. Prehospital Supplemental Oxygen in Trauma Patients: Its Efficacy and Implications for Military Medical Care. *Mil Med.* 2004;169:609-612.

Neonates

 1,737 depressed neonates: -881 resuscitated with room air -856 resuscitated with 100% oxygen Mortality: -Room air resuscitation: 8.0% -100% oxygen resuscitation: 13.0% Room air superior to 100% oxygen for initial resuscitation

Rabi Y, Rabi D, Yee W: Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. *Resuscitation* 72:353-363, 2007

Davis PG, Tan A, O'Donnell CP, et al: Resuscitation of newborn infants with 100% oxygen or air: a systematic review and meta-analysis. *Lancet* 364:1329-1333, 2004

Oxygen Therapy Summary AHA 2010 Guidelines: 94-98% **Collaborative Oxygen Protocol:** maintain > 95% (oximetry 1st) lowest level possible Wijesinghe M, Perrin K, Ranchord A, Simmonds M, Weatherall M, Beasley R. Routine use of oxygen in the treatment of myocardial

Routine administration can be harmful

Hyperoxia may decrease target organ perfusion (when given needlessly) - use

infarction: systematic review. Heart. 2009;95:198-202.

True and Trusted! 40% at 6 LPM

Mission Critical

fppt.com