Who should be transported to a trauma center?

TRIAGE TRIAGE GUIDELINES

Today's Agenda

- Trauma triage guidelines
- CCR
- Therapeutic Hypothermia

Overview

- Released by CDC
 - MMWR 1/23/09
 - www.cdc.gov/mmwr
- Reviewed evidence
 - Severity predictors
 - Criteria changes

Overview

- 4 step triage process
- Recognized different systems
 - Transport to nearest appropriate trauma center
 - Not necessary to transport to Level I

Step One: Physiologic Criteria

- Added:
 - RR < 20 in infants < 1 y/o
- Deleted:
 - RTS < 11
Step Two: Anatomic Criteria

- **Added:**
 - Crushed, degloved, mangled extremity
- **Modified:**
 - Open or depressed skull fracture
- **Moved:**
 - Major burns

Step Three: Mechanism Criteria

- **Added:**
 - Child (<15 y/o) fall > 10 ft or 2 - 3 times height
 - Vehicle telemetry
- **Deleted:**
 - Rollover
 - Extrication > 20 min
- **Modified:**
 - > 12" intrusion by pt or > 18" anywhere

Step Four: Special Considerations

- **Added:**
 - Time sensitive extremity injury
 - ESRD on dialysis
 - Provider judgment
- **Deleted:**
 - IDDM, CV, respiratory disease
 - Cirrhosis, immunosuppressed
 - Morbid obesity
- **Modified:**
 - Burns
 - Pregnancy > 20 weeks

Continuous Chest Compression

CARDIOCEREBRAL RESUSCITATION

CPR = CARDIO-PULMONARY RESUSCITATION

Why are we resuscitating the lungs???
Bystander Compressions

- Early Bystander Compressions essential
- Often delayed by gasping
 - Snoring / Gurgling
 - Noisy / heavy breathing
- Gasping viewed as breathing
- EMD questioning

The Gasp

- Up to 50% cardiac arrest patients
- Still moving air
- Intrathoracic pressure changes

Airway Management

- Arterial oxygen content adequate
 - During gasp
 - During continuous compressions
- Lack of blood flow the problem, not lack of oxygen!
- Delay airway management until gasping stops

Mouth-to-Mouth

- Inhibits bystander willingness
- Interrupts compressions = interrupts blood flow
- Increases regurgitation
- Increases intraabdominal pressure
 - Limits lung expansion

Compressions

- Blood flow gradually increases first 7 – 8 compressions
- Faster = improved pressures
- Chest recoil improved filling
- Overinflation causes decreased cardiac filling!
CCR Summary

- Maximize compressions
- Minimize interruptions
- Ventilate when gasping stops
- Brief stop for shocks only
- Airway management minimized
- Jeff’s suggestion: *supraglottic airway instead of intubation*

What Is Therapeutic Hypothermia?

- Purposely decrease body temperature
- Used after Return of Spontaneous Circulation (ROSC)

Death After ROSC

- 10% die due to recurrent dysrhythmias
- 30% die due to cardiovascular collapse
- 20% die due to other causes (sepsis, etc.)
- 40% die from neuro impairment

Recommendation:

“Unconscious adult patients with spontaneous circulation after out-of-hospital VF cardiac arrest should be cooled to 32-34°C. Cooling should be started as soon as possible and continued for at least 12-24 hours.”

Recommendations:

- American Heart 2005
 - Comatose Out of Hospital VF Arrest -> Class IIa
 - In hospital / other rhythms -> Class IIb

Prehospital Therapeutic Hypothermia

- 2005 AHA / ILCOR Recommendations
- Multiple studies
- Number Needed to Treat (NNT) = 4 – 7
 - Better than some other proven therapies

Why???

- Slow cell metabolism rate
 - But improves use of glucose
 - Improves cell processes
- Decrease secondary injury:
 - Reperfusion injury
 - Oxygen free radicals

Why???

- Decrease inflammatory response
- Decrease coagulation
- Reduces intracranial pressure
- Reduce injury from seizure

But what about....

- Defib effectiveness:
 - Improved first shock with mild hypothermia
- Medications:
 - Vasoconstriction from hypothermia
 - Increases body's own release
 - May need less
 - Only information moderate to severe hypothermia

How do we do it?

- Surface cooling
 - Expose patient
 - Turn down heat
 - Ice packs in axillae & groin
- Infuse cold saline
 - Maintained at 4°C
 - 30 ml/kg up to 2 liters
How do we do it?

- **Vasopressors:**
 - Improve blood pressure
 - Maintain perfusion

- **Sedation / Paralysis**
 - Stop shivering

Wake County, North Carolina

- Staged implementation of 2005 guidelines
- Baseline neuro intact survival
 - All comers = 4.2%
 - VF/pVT = 13.8%
- After full implementation:
 - Neuro intact survival = 11.5% / 40.8%
 - When therapeutic hypothermia introduced:
 - 8.1% > 11.5%
 - VF/pVT: 34.6% -> 40.8%

Review

- Updated field trauma triage scheme
 - Improved focus on physiologic and anatomic criteria
 - Needs study and improvement in MOI criteria

- **CCR**
 - Continuous compressions improve coronary & cerebral blood flow
 - Airway management deemphasized

Review

- **Therapeutic Hypothermia**
 - Prevent secondary cell injury
 - Improves neurologic outcome

Jeff Myers, D.O., Ed.M., NREMT-P, FAAEM
Director, Behling Simulation Center
Clinical Assistant Professor Emergency Medicine
University at Buffalo Academic Health Center
myers@photoemsdoc.com
http://www.photoemsdoc.com/
716.898.3525

Handout & Answer key can be downloaded from:
http://www.photoemsdoc.com/downloads.htm