BLAST & EXPLOSIVE INJURIES

Eric T. Haas, NRP
Federal Bureau of Investigation
Operational Medicine
Counter-IED Section
Job Security
Caveats, Disclaimers

- I am NOT a bomb technician
- This is NOT an explosives class
- I really do like this stuff!
Goals and Objectives

- Community Awareness
- Basic Understanding of Explosives
- Types of Blast Injury
- Treatment Considerations
“Improvised explosive devices (IEDs) remain one of the most accessible weapons available to terrorists and criminals to damage critical infrastructure and inflict casualties, as was demonstrated in the attempted bombing of Northwest Flight 253 on December 25, 2009, the October 2010 air cargo plot, and the wars in Iraq and Afghanistan.”

Countering Improvised Explosives Devices
Office of the President of the United States
February 26th, 2013
Community Awareness

What’s in your 1st due area?
Military Bases

MCB Quantico West Point

Fort AP Hill NAB Little Creek

Fort Belvoir Watervilet Arsenal
Pyrotechnics
“Our quarrying process typically begins with drilling and blasting the rock into smaller pieces.”
Criminal Acts

- December 5, 2012
- Fredericksburg, VA
- Attempted robbery
Criminal Acts
Explosives 101

How does it happen?
Combustion vs. Explosion

- Combustion
 - Fuel + Oxygen + Ignition

+ Air (Oxygen) + Spark = "vroom, vroom, vroom"
Combustion vs. Explosion

- Fuel Source
- Oxidizer
Combustion vs. Explosion

Ignition Source
EXPLOSIVE

Fuel Source + Oxidizer + Ignition Source =
Types of Explosions

- Mechanical
 - Fuel-Air, BLEVE, Pressure Cooker

- Nuclear
 - Fission versus Fusion

- Chemical
Fuel-Air Explosive

- Fuel source is deployed, sparked
 - uses oxygen from the surrounding air

- Staying power
 - Bunker busters

- Grain Bin Explosions
Fuel Air Explosion
Pressure Cookers

Pressure Cooker

The use of pressure cookers as an improvised explosive device is a technique commonly taught in Afghan terrorist training camps, according to a 2003 bulletin by the Department of Homeland Security. “Pressure cooker bombs are made with readily available materials and can be as simple or as complex as the builder decides,” DHS says.

When a Pressure Cooker is Used in Cooking:

Normal use
Pressure cookers cook food by using an airtight lid to trap steam, raising its effective cooking temperature to about 250 degrees Fahrenheit.

When a Pressure Cooker is Used as a Maiming Weapon:

1. Detonation
Explosive material is substituted for food. An electrical charge ignites the material, which is surrounded by shrapnel such as nails and ball bearings.

2. Expansion
The ignition of the explosive material rapidly builds until it blows open the cooker.

3. Blast Fragments
The blast shoots the shrapnel outward at speeds as fast as a bullet.
Types of Explosions

- Mechanical
 - Fuel-Air, BLEVE, Pressure Cooker

- Nuclear

- Chemical
Nuclear Explosion

- Fission

- Fusion

- Do Not confuse with a Radiological Dispersal Device (RDD), also known as a Dirty Bomb.
Types of Explosions

- Mechanical
 - Fuel-Air, BLEVE, Pressure Cooker

- Nuclear
 - Fission versus Fusion

- Chemical
Chemical Explosives

- **Deflagration**
 - A rapid combustion that moves through the explosive material at a velocity less than the speed of sound
 - Uses internal or external oxygen source

- **Detonation**
 - A reaction that moves through the material at a velocity greater than the speed of sound in the unreacted material
 - Instantaneous combustion as it uses internal oxygen
Low Explosives

“Propellants”

- Black Powder
- Nitrocellulose
 - Smokeless powder
- Match heads
High Explosives (HE)

- Nitroglycerine- “Dynamite”
- TNT
- Ammonium Nitrate
- PETN – ‘det’ cord.
- C-4 – familiar to all military
- Semtex- commercial use
Improvised Explosive Device

- Radio Controlled
- Command Wire
- Time Delay
- Victim Operated
- Personnel Borne
- Vehicle Borne
Radio Controlled

POSITIVE CONTROL OVER THE DEVICE TO CAUSE MAXIMUM DAMAGE AND INFlict MAXIMUM CASUALTIES.

CONSISTS OF A TRANSMITTER AND RECEIVER THAT ARE OFTEN ENCODED TO PREVENT ACCIDENTAL INITIATION.
May be utilized to set off any electrically initiated device or provide safe separation.
Requires a specific action by the victim that changes the environment seen by a switch controlling the device causing it to function.
Personnel & Vehicle Borne IED
BANG!

Produces a shock wave in the air
Creates high pressure outwards
Creates a vacuum from the seat of explosion
Ka-BOOM
Explosive Injury

- What are you going to expect to see?

- What are you not going to see…
 - But should be watching for?

- What does your scene size-up tell you?

- What information does a receiving hospital want to hear?
Explosive Effects

- Pressure
- Fragmentation
- Heat/Thermal
The Explosion

- Blast Occurs
 - Fast, strong pressure wave
 - “Positive Phase”
 - Objects get thrown away from blast

- Air fills in vacuum
 - Longer, weaker pressure wave
 - “Negative Phase”
 - Objects get pulled towards blast
Little Bang...Big Injury

Blasting cap injury

Effects of improvised fireworks
Blast Injury

- **Primary**
 - The direct effect of the blast
- **Secondary**
 - Due to projectiles from the blast
- **Tertiary**
 - The victim is thrown by the blast wind
 - “Flying People!”
- **Quaternary**
 - All other effects – burns, building collapse, etc.
Mechanics

Increasing probability of injury

- Heat
- Overpressure
- Impact
- Fragmentation

Increasing distance Increasing distance
"Blast Environment" is a very important factor determining the extent of injuries.

Nearby structures may either act as a shield or may reflect the blast wave onto a casualty.
 - Think- Rubber Bouncing Ball

Confined environment increases damage
 - Foxhole or shelter is a confined environment
 - Inside the bus is bad...
Blast in enclosed space

- A blast wave that is reflected can create a peak pressure 10X greater than that of the incident wave.
 - Blast waves inside buildings are repeatedly reflected creating a “complex blast wave”
 - Marked increase in injuries related to primary blast effects when explosion occurs in a closed space
Primary Blast Injury

- Biggest concern is Proximity

- Organs most sensitive to blast effects are air filled
 - middle ear: ear drum rupture @ 5 psi
 - the respiratory system –
 - lungs and bronchi: lung damage at 15 psi
 - upper airways (trachea, pharynx and larynx)
 - nasal passages and sinuses

- Bowels
- Stomach
- Bladder
Primary Blast Injury: Ear

- **Middle ear:**
 - Ruptured tympanic membrane (TM)
 - Temporary conductive hearing loss

- **Inner ear:**
 - Temporary sensory hearing loss
 - Permanent sensory hearing loss
Primary Blast Injury: Respiratory

- Hemorrhage:
 - Pulmonary contusion
 - Hemoptysis
 - Hemothorax

- Escape of Air:
 - Pneumothorax
 - Pneumomediastinum
 - Arterial gas embolism (AGE)

- Consider epithelial damage to tract
Primary Blast Injury, cont.

- **Brain**
 - Concussion
 - TBI
 - Signs and symptoms include headache, fatigue, poor concentration, lethargy, anxiety, and insomnia

- **Digestive Tract**
 - Gastrointestinal hemorrhage / perforation
 - Retroperitoneal hemorrhage
 - Ruptured spleen and / or liver
Secondary Blast Injury

- Injury caused by fragment or propelled objects
- Most visible type of injury
- Be mindful of size of fragmentation
- Often results in the majority of casualties
Fragmentation

- Primary versus Secondary
- Can be anything!
- All shapes and sizes
- May require extension debriding
Fragmentation can hurt
Tertiary Blast Injury

- The blast wind pushes/throws the victim onto something else.
- The trauma is due to the impact.
- Blast wind occurs with both HE and LE explosions
Quaternary Blast Injury

- The building collapses
- The products of the blast are poisonous
- Heat burns
- Exacerbation of underlying COPD, CAD, etc.
Pre-planned operations

Identify the elements if possible

Go Back to the Basics: Trauma is Trauma
Attacking The Trauma

- **Tourniquets:**
 - Use *liberally* for any significant extremity hemorrhage
 - No adverse events seen
 - Use early: “first resort not last resort”
 - Consider junctional tourniquets

- **Aggressive control of the airway**
 - Within protocol
 - Consider intubation if necessary
Consider additional therapies
 * Within protocol
 * TXA, Hextend

Provide monitoring and support
 * Whether wanted or not
 * Consider transport for evaluation
So you see this guy... now what?
Injuries to the bomb tech

- Blast pressure
 - Ear injury
 - Lung damage
 - Traumatic amputation
 - Internal hemorrhaging

- Fragmentation
 - Possibility of fragments traveling in excess of 8900fps

- Environmental
 - Heat
 - Cold
Body Orientation
Potential Hazards for Fire/EMS

- Secondary devices
- Fragmentation
- Chemical, biological, radiological exposure
- Exposure to residues
- Blast pressure
What is in your first due? Jurisdiction?

Scene Safety

Manage Trauma as Trauma

Provide Support
Acknowledgements

Roland Hankey
N. Rick Skipper
David Acquavella
Geoff Kent
Dennis Thompson
Javier Zuniga
FBI Explosives Unit
Terrorist Explosive Device Analytical Center (TEDAC)